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Abstract
Shift-invariance is a desirable property of many machine learn-
ing models. It means that delaying the input of a model in
time should only result in delaying its prediction in time. A
model that is shift-invariant, also eliminates undesirable side
effects like frequency aliasing. When building sequence mod-
els, not only should the shift-invariance property be preserved
when sampling input features, it must also be respected inside
the model itself. Here, we study the impact of the commonly
used stacking layer in LSTM-based ASR models and show that
aliasing is likely to occur. Experimentally, by adding merely
7 parameters to an existing speech recognition model that has
120 million parameters, we are able to reduce the impact of
aliasing. This acts as a regularizer that discards frequencies the
model shouldn’t be relying on for predictions. Our results show
that under conditions unseen at training, we are able to reduce
the relative word error rate by up to 5%.
Index Terms: aliasing, sampling theorem, stacking layers, reg-
ularization, speech recognition

1. Introduction
Frequencies that are different in the original signal can become
indistinguishable after down-sampling an audio signal. This
phenomenon is known as aliasing [1]. Aliasing also occurs
when down-sampling an image and it can be avoided using 2D
low-pass filters [2, 3]. Any time a signal is indexed with time-
like variables and we downsample along that axis (e.g., by pool-
ing, or sub-sampling), aliasing should be carefully considered.

An important result of signal processing is that by not tak-
ing aliasing into account, we can make a process non-shift in-
variant [1]. To define shift-invariance, consider the transforma-
tion F of a signal x(t) into y(t):

x(t)
F−→ y(t)

The transformation is shift-invariant if for any shift τ we also
have:

x(t− τ) F−→ y(t− τ)
As a simple illustration of the relationship between alias-

ing and shift-invariance, consider the continuous time signals
x(t) = sin(π(t − τ)) and the process F that consists of sam-
pling the signal for every integer value of t = n and then re-
constructing the signal y(t) from the samples. In this case, the
signal can be reconstructed perfectly by unambiguously com-
puting τ . However, if we had instead allowed higher-frequency
signals, such as x(t) = sin(4π(t − τ)), it would become im-
possible to distinguish τ = 0 from τ = 1 as for every integer
n, sin(4π(n− 0)) = sin(4π(n− 1))

Failure to be shift-invariant can cause undesirable artifacts.
Moiré patterns [4] are a famous example of a failure for im-
ages. In the time domain, the wheel of a car can appear to spin
backward in movies shot on film [5].

Shift invariance is also a desirable property for many ma-
chine learning tasks. An image identification task should have

the same prediction if the input image is shifted by one pixel.
Similarly, an automatic speech recognition (ASR) task should
eventually decode the same transcript if the input is shifted in
time.

Aliasing is typically avoided by removing the high frequen-
cies in the signal using a low-pass filter prior to down-sampling.
The cut-off frequency to use is dictated by the Shannon-Nyquist
theorem [6]. However, when building machine learning models,
it is not a sufficient condition as we must make sure that the in-
ternal transformations of the signal inside the neural network
are also shift-invariant. Some layers, such as feed forward net-
works are natively integer shift-invariant because they treat each
time sample independently, but many are not.

Shift-invariance has been studied in the context of pooling
convolutional neural networks (CNN) for acoustic models [7]
and image processing [8]. Results appear to be more encourag-
ing with image processing, potentially because they often have
sharper contrasts leading to high frequency components, while
high frequencies in speech do not necessarily carry as much
information as low frequencies. Other studies [9] in image pro-
cessing have also shown limited improvements so any improve-
ment must be validated experimentally.

The present work focuses on stacking layers. Stacking
layers, or time-reduction layers, are typically used in end-to-
end ASR models to reduce the sampling frequency of features
within the model. For example, in [10] the authors employ
pyramidal layers and in [11, 12, 13] the authors use a stacking
layer. This helps reduce overall computation, while also partly
addressing the mismatch in total number of input and output
tokens.

Stacking layers take a sequence of N vectors of dimension
D and output a sequence of N

K
vectors of dimension K × D.

The parameter K is an integer, and is the rate at which the sam-
pling frequency is reduced. We will show that this transforma-
tion results in a violation of the shift-invariance property. Sub-
sequently, we introduce a simple low-pass filtering layer within
the model to prevent aliasing when using stacking layers, and
experimentally show that this helps improve performance in
mismatched test conditions. In effect, this could be seen as a
form of regularization where undesired parts of the signal (the
high frequencies) are forced to zero.

The rest of the paper is organized as follows. In Section 2,
we present an analysis that shows why stacking layers are not
shift invariant. In section 3 we present the base model that we
want to improve. In section 4 we describe the proposed im-
provements. Finally, in section 5 we experimentally verify the
improvements.

2. Stacking Layers are Not Shift-Invariant
In this section, we describe the rationale for having a low-pass
filter before the stacking layer. We use a simple illustration
to describe the issue in Figure 1. There, we have 6 frames
x[0] . . . x[5] each consisting of a vector of dimension 4. In order
to emphasize the effect of aliasing that we will see, the signal



Figure 1: Example of a signal before a stacking layer.

Figure 2: Example of a signal after a stacking layer without
prior shift (left) and with prior shift (right).

has purposely been made to have a high frequency, alternating
between low values for even indices and high values for odd
indices.

After the stacking of two consecutive frames (where the fre-
quency reduction parameter is K = 2), we have a new signal
y[0] . . . y[2] with half as many frames, each having vectors of
double the size: 8. This is illustrated on the left side of Fig-
ure 2. We see that in this example, the top 4 of the 8 coordinates
of each vector have relatively high values, while the bottom 4
have relatively low values. If instead of directly passing the sig-
nal x into the stacking layer, we had first shifted it by appending
first a vector of zeros, we would get the stacking result of the
right side of Figure 2. We can see there that the location of the
high and low values in the y vectors are flipped.

Even though the next layer after this stacking step may
be permutation-invariant (e.g. by exchanging the weights on
the high and low sections), the overall model is still not shift-
invariant. Since we want the model to behave equally well with
either unshifted or shifted inputs, the shift is not known a-priori
and therefore the location of the high values is also not known.

One could be tempted to remediate this effect by averaging
the high and low section of the y vectors. However, that would
not solve the issue of fractional shifts due to shift in the raw au-
dio signal that are not an integer multiple of the frame sampling
rate. The answer should be more refined.

While it thus appears that the stacking layer could theoret-
ically be problematic, in practice, the issue may not be very
severe since some works in existing literature ignores this prob-
lem [11, 12]. We experimentally show that even though this
problem does not occur in matching test conditions, it can po-
tentially degrade performance in mismatched test conditions.

3. Base model
3.1. Architecture

We used the exact model architecture derived from [11, 12],
which we briefly summarize here. The input of a model are 128-
dimensional log-mel filterbank energies sampled every 32ms

with a 10ms hop. This frequency was chosen as a tradeoff be-
tween computational load and accuracy [13]. Features from 4
consecutive frames were stacked to create a 512-dimensional
input. The target of the model are ground-truth label sequences
of word-pieces.

The model is an RNN-T [14, 15] that consists of an encoder,
a joint network, and a decoder. We did not use the listen-attend
and spell [10] rescoring of [11, 12]. The encoder takes as in-
put log-mel features and computes encoder features through 8
unidirectional long short-term memory (LSTM, [16]) layers of
2,048 hidden units followed by a 640-dimensional projection
layer. Between the first and second layers, the frame rate is
halved using a stacking layer with K = 2. This was motivated
by [10, 17] and is explained in detail in section 3.1 of [11]. The
goal is to reduce the computational load without degrading the
quality of the recognition. This approach is natural, as it is ex-
pected that the summarization of the audio signal can be done
at a lower rate as we progress through the encoder layer, i.e.,
as we go from log-mel filterbank to a more abstract represen-
tation of the speech at higher encoder layers. However, in the
present work, we will revisit the assumption that the stacking
layer respects the Nyquist sampling theorem.

The joint layer is a feed forward network with 640 hid-
den units and the prediction network is an LSTM. The final
stage of the model is a softmax with 4,096 units, one for each
of our word-piece units. Our base model is the exact same
model as in [11, 12] and it has about 120M parameters. We
use a forward-backward training algorithm [18] for loss com-
putation; the models are trained on 8x8 Tensorflow Processing
Units (TPUs, [19]) with a global batch size of 4,096.

We also used a supervised training set that was similar to the
one used by [20, 21], consisting of English utterances. The data
was augmented by adding reverberation and varying levels of
noise from YouTube [22]. We did not alter the training utterance
by changing the pitch or the encoding of the signal.

3.2. Frequency analysis

We first present an analysis that shows whether or not the alias-
ing problem exists in RNN-T models. Aliasing would not occur
if the upper half of the frequencies had very low energy com-
pared to the lower half of the frequencies. It is possible that
during the training of the neural network, the weights learned
for the first three layers of the encoder naturally produce a sig-
nal that will not be aliased when down-sampled.

We thus inspect the frequency components on a donated
utterance. For each of the 640 dimensions of x, the input to the
stacking layer, we compute the Fourier transform of the time
signal, as shown on Figure 3. On the left half of the figure
we show a heat map of the frequency response. On the right
half of the figure, we show the normalized average frequency
response. If the model had learned to perfectly low-pass the
signal, we would expect to only see power in the lower half
of the frequencies. We do indeed see a downward slope, but
the trend is not very strong. This suggests that the frequency
response could be improved.

4. Proposed model
4.1. Location and type of the filter

Our proposal is to insert a low-pass filter just before the stacking
layer. The filter is designed to remove most of the energy in the
upper half of the response, thus alleviating most of the effect of
aliasing.

We decided to treat each of the 640 components of the x[t]



Figure 3: Frequency analysis of input of the frame stacker in the
base model (dB).

Figure 4: Low-pass filter frequency response.

vectors independently. Since there is no temporal dependency
between the components, having any kind of mixing between
them didn’t seem natural. Another way to look at this, we could
choose an arbitrary permutation of the 640 components and per-
mute the weights of the model accordingly, and obtain a com-
pletely equivalent model.

There is, however, a clear temporal dependency between
x[t] and x[t + 1], which is the direction in which we want to
operate the low-pass filtering. We thus set out to design a 1D
filter that would operate on each of the 640 dimensions inde-
pendently and identically.

4.2. Half-band filter

Contrary to [8], we did not use hand-crafted filters and instead
we decided to use standard methods to design the low pass fil-
ter [23]. Since we didn’t want to introduce a phase distortion
between the various 640 components of the signal, we decided
to have a symmetric filter [24, 25]. In particular, we settled on
a finite impulse response filter with 7 taps designed using the
Remez algorithm [26]. We used the open-source Scipy Signal
library [27] for computing filter coefficients. Since the stack-
ing parameter was K = 2, we wanted to cut off the top half
and thus chose two bands. The first band was [0.0, 0.20] where
the desired response was 1.0 (keep) and the second band was
[0.30, 0.5] the desired response was 0.0 (reject). The Python
code was

from scipy import signal
h = signal.remez(

numtaps=7,
bands=[0.0, 0.20, 0.30, 0.5],
desired=[1.0, 0.0])

As a confirmation that the filter design was appropriate, we
plotted its frequency response on Figure 4. We see that, as de-
signed, it removes most upper half of the frequencies.

Throughout our work, we did not change the values of these
taps. In particular, during the training of our new model, these
weights were fixed from the start to the values above.

Figure 5: Frequency analysis of input of the low-pass filter (dB).

Figure 6: Frequency analysis of output of the low-pass filter, i.e.
the input of the frame stacker (dB).

4.3. Training of the new model and evaluation

Beside the addition of the low-pass filter before the stacking
layer, we did not modify the model in any other way. The
weights of the low-pass filter were not tuned and were kept
frozen to their initial values. We trained all the other weights
from scratch. We trained both the base and proposed models
for roughly as many steps as [11, 12].

For evaluation, we set the same beam search parameters for
the baseline and proposed models. For simplicity, we did not
introduce any contextual biasing, nor did we use an end-pointer
model.

4.4. Frequency response before and after the filter

In order to check the effect of our filter on data, we repeated the
frequency analysis of section 3.2. Using the same utterance, we
looked the frequencies before the low-pass filter and between
the low-pass filter and the stacking layer.

We do see in Figure 5 that the frequency distribution before
the low-pass filter still contains undesired frequencies. This is
not surprising, as the model is free to output any frequency it
wants, because they will be removed anyway. After the low-
pass filter, in Figure 6, we see a strong attenuation of the unde-
sired frequencies.

5. ASR Results
We measured the ASR quality using word error-rate (WER) on
the same voice-search test set as [11, 12]. We compared the base
model and the proposed model and the results are shown in Ta-
ble 1. We see a small improvement in quality of the recognizer
when using the proposed model.

Base WER Proposed WER Change
VS 5.8 5.7 -1.7%

Table 1: Performance of the base and proposed models on a
voice-search set.



We then added white noise to our test sets (Table 2). Even
though we had augmented our training data with various types
of noise, we see an increased robustness to white noise at var-
ious levels. In particular, in the mid-range where the effect on
the WER is not extreme, our new model has a somewhat greater
relative improvement.

Noise (dBFS) Base WER Proposed WER Change
-72.2 5.8 5.7 -1.7%
-66.2 5.8 5.7 -1.7%
-60.2 5.9 5.7 -3.4%
-54.2 6.1 5.9 -3.3%
-48.2 6.5 6.3 -3.1%
-42.1 7.9 7.8 -1.3%
-38.6 9.7 9.5 -2.1%
-36.1 12.1 11.7 -3.3%
-30.1 21.7 21.3 -1.8%

Table 2: Performance of the base and proposed models on a
voice-search set under various white noise levels in decibels
relative to full scale (dBFS).

Next, we wanted to know whether the new proposed model
could perform better under unseen conditions. In particular,
some previous work had observed a lack of robustness of ASR
models to different codecs [28, 29] when the model is not
trained with codec distortion.

Contrary to the previous approaches, we had not augmented
the data using different codecs at training time. Instead, we only
applied the various codecs at evaluation time. We tested codecs
that are frequently applied to lower data usage when contacting
a remote server to perform ASR from a cell phone.

To simulate various codecs, we used the open-source soft-
ware FFMPEG [30]. We report results in Table 3 where the first
row (no codec) is a repetition of Table 1. We observe that the
performance of the model varies as the code and bitrate used
during evaluation differs from those used during training, mir-
roring the results of [28, 29]. It also appears that as expected the
lower the bit-rate the lower the quality of the recognition. The
models trained with anti-aliasing filters consistently performs
better under these conditions with larger relative improvements
when the impact of the codec is more severe.

Base WER Proposed WER Change
No codec 5.8 5.7 -1.7%
OPUS 128K 5.8 5.7 -1.7%
OPUS 24K 5.9 5.8 -1.7%
OPUS 12K 6.3 6.0 -4.8%
MP3 128K 5.9 5.6 -5.1%
MP3 64K 5.9 5.6 -5.1%
MP3 32K 6.1 5.8 -4.9%
MP3 23K 6.5 6.2 -4.6%
MULAW STEREO 5.9 5.6 -5.1%

Table 3: Performance of the base and proposed models on a
voice-search set under various codecs.

6. Discussion
In essence, our approach is a form of regularization. However,
instead of randomly masking some parts of the signal, as done,
for example with Dropout [31] or SpecAugment [32], we have a
deterministic, first-principle approach. We looked at the archi-
tecture of our model and had a deterministic masking of some

part of the signal. Because some frequencies do not carry in-
formation and are known to cause artifacts in our model archi-
tectures, we were able to suppress them without reducing the
quality on the original data and improve the power of extrapo-
lation of our model.

The problem of aliasing had already been studied in CNNs
and pooling layers, but the problem appears to be present also
in stacking layers. Removing the stacking layer, in our case,
would have been impractical. It would have negated the speed
and size and computation gains of [11, 12]. The solution we
proposed is a simple filter that removes the unwanted frequen-
cies. This filter was not trained, because we already knew the
desired behavior.

Our solution retains the desirable features of the original
model [11, 12]. Because the filter is causal, we can still rec-
ognize speech in an online fashion and do not require to see the
entire audio sample before processing it. The optimizations that
come from dividing the sampling rate by 2 inside the encoder
are still fully realizable. The encoder architecture before and
after the encoder is left unchanged. Given the tiny size of the
filter and that its taps are the same for all 640 dimensions, the
computation of the convolution can easily be batched on GPU
and TPU.

While the improvements are modest, the impact on the size
of the model is negligible. By adding 7 parameters to a model
that had 120 million parameters, we leave the model size practi-
cally unchanged. Yet, we were able to improve the performance
of the model by a modest but noticeable 1.7%.

In addition, we were able to improve the performance on
unseen conditions. Without performing data augmentation by
using the coders during training, we saw relative improvements
of up to 5.1% under these conditions.

7. Conclusions
Frequency aliasing is a very well-studied problem of signal pro-
cessing. When designing machine learning algorithms, we must
consider its effects not only when sampling the input signal but
also inside the model itself. CNNs had previously been shown
to suffer from aliasing issues; here we focused on stacking lay-
ers.

For an experimental validation, we studied the effect of
aliasing in an end-to-end speech recognition model. In particu-
lar, we focused our attention on the stacking layer that reduces
a sampling frequency by 2 inside the encoder of an RNN-T. We
first showed that the model had not learned to low-pass the sig-
nal, as the sampling frequency was further reduced inside the
model.

The analysis of the base model revealed that it had not ro-
bustly learned to ignore these high frequencies and was thus
susceptible to aliasing. Instead of using a stochastic approach
to reducing overfitting, we rely on well known, first-principle
theorems from signal processing [6]. By introducing a simple
filter, we were able to increase the robustness of our model un-
der conditions unseen at training time.

Given the tiny size of our filter, the size of the model is
essentially unchanged. In addition, the performance advantages
of reducing the sampling frequency within the model are still
conserved. In particular, we are able to compute the output of
the different encoder layers in an identical fashion.
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